Ccyntec

Current Sensor Resistor

RLM-0603-K Series Current Sensor Resistor (Lead / Halogen Free)

Features / Applications :

- Power rating is up to 1/5W
- Low TCR current sensor
- Resistors are ideal for all types of current sensing
- Metal foil construction; Excellent long-term stability
- Moisture sensitivity level: MSL 1
- RoHS compliant

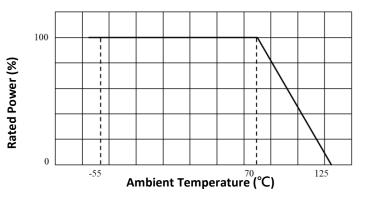
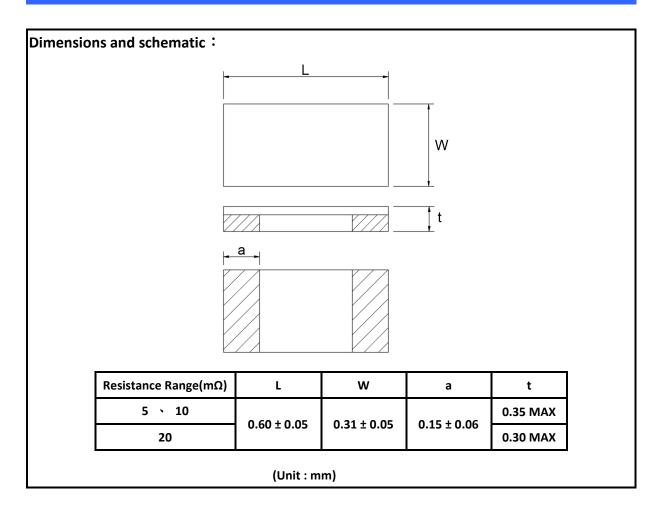
Electrical Specifications :

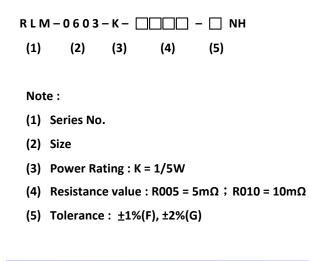
Characteristics ¹	Feature
Power Rating ²	1/5 W
Resistance Value(mΩ)	5 、 10 、 20 mΩ
Temperature Coefficient of Resistance(ppm/°C)	± 150
Operation Temperature Range	-55°C to +125°C
Maximum Working Voltage (V)	(P*R) ^{1/2}

Note :

1. For detailed information see table on page 3

2. For sensors operated at ambient temperature in excess of 70°C, the maximum load shall be derated in accordance with the following curve.


Figure 1. : Power Temperature Derating Curve

Outline Drawing :

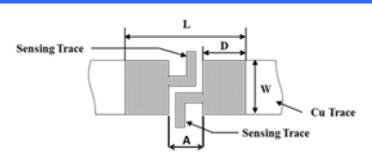
Type Designation :

Available standard resistance values :

Resistance	Tolerance	
Values	±1.0%	±2.0%
R005	~	✓
R010	1	✓
R020	✓	✓

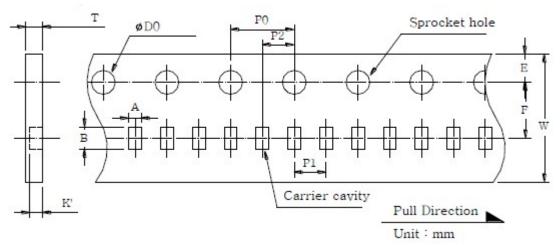
✓ = available

Further values and tolerances on request.


Reliability Performance :

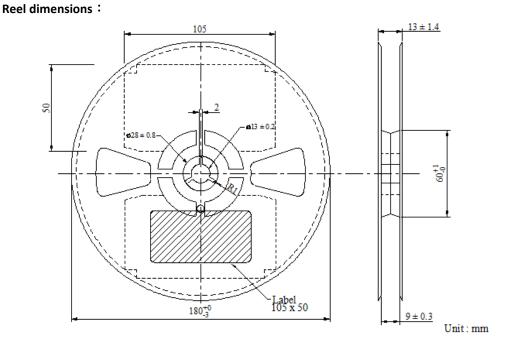
Test Item	Condition of Test	Requirements
Short Time Overload	2.5 x Rated power for 5 seconds Refer to JIS C 5201-1 4.13	$\Delta R \div 1.0\%$
Thermal Cycling	-55 to 125℃ 100 cycles, 15 min at each extreme condition Refer to JIS C 5201-1 4.19	∆R : ± 2.0%
Low Temperature Storage	Kept at -55℃, 1000 hours Refer to JIS C 5201-1 4.23.4	∆R : ± 2.0%
Resistance to Soldering Heat	Dipped into solder at $260 \pm 5^{\circ}$ C for 10 ± 1 seconds Refer to JIS C 5201-1 4.18	∆R : ± 1.0%
Load Life	Rated voltage for 1.5hours followed by a pause 0.5hour at $70 \pm 3^{\circ}$ C Cycle repeated 1000 hours Refer to JIS C 5201-1 4.25	∆R : ± 2.0%
Damp Heat with Load	p Heat with Load D.C. rated voltage for 1.5 hours ON and 30 minutes OFF. Cycle repeated 1,000 hours Refer to JIS C 5201-1 4.24	
High Temperature Exposure	Kept at 125° for 1000 hours $\Delta R : \pm$ Refer to JIS C 5201-1 4.23.2	
Solderability	Temperature of Solder : $245 \pm 5^{\circ}$ C Immersion Duration : 3 ± 0.5 second Refer to JIS C 5201-1 4.17	Uniform coating of solder cover minimum of 95% surface being immersed
Mechanical Shock	100 G's for 6milliseconds. 5 pulses Refer to JIS C 5201-1 4.21	∆R : ± 1.0%
Substrate Bending	Glass-Epoxy board thickness : 1.6mm Bending width : 2mm Between the fulcrums : 90mm Refer to JIS C 5201-1 4.33	ΔR:±1.0%

Note : Measurement at 24 \pm 4 hours after test conclusion for all reliability tests-parts.


Recommend Solder Pad Dimensions :

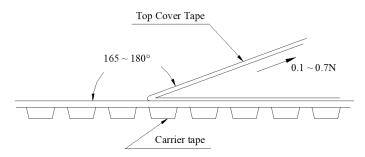
Dimensions (mm)	W	L	D	Α
5 、 10、20 m Ω	0.32	0.75	0.3	0.15

Packaging :


Tape packaging dimensions :

Α	$\textbf{0.38} \pm \textbf{0.02}$	F	$\textbf{3.50} \pm \textbf{0.05}$	10P0	$\textbf{40.00} \pm \textbf{0.20}$
В	$\textbf{0.68} \pm \textbf{0.02}$	P1	$\textbf{2.00} \pm \textbf{0.05}$	K'	$\textbf{0.28} \pm \textbf{0.02}$
D0	$\textbf{1.55} \pm \textbf{0.03}$	P2	$\textbf{2.00} \pm \textbf{0.05}$	т	$\textbf{0.42} \pm \textbf{0.02}$
E	1.75 ± 0.05	P0	$\textbf{4.00} \pm \textbf{0.10}$		

Unit : mm



Peel Strength of Top Cover Tape :

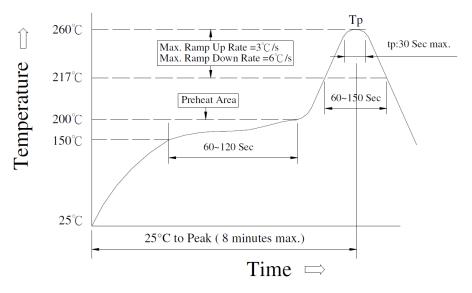
The peel speed shall be about 300mm/min.

The peel force of top cover tape shall between 0.1 to 0.7N

Number of Taping :

10,000 pieces / reel

Label Marking :


The following items shall be marked on the reel.

(1) Type designation

- (2) Quantity
- (3) Manufacturing date code
- (4) Manufacturer's name
- (5) The country of origin

Recommend Soldering Conditions: :

Meet JEDEC-020D

(1) Reflow Soldering Method :

Reflow Soldering	Tp:255 to 260°C Max.30 seconds (Tp)
	217°C 60 to 150 seconds
Pre-Heat	150 to 200 $^\circ\!\!\!C$ 60 to 120 seconds
Time 25° \mathbb{C} to peak temperature	8 minutes max

(2) Soldering Iron Method : $350\pm 5^{\circ}C$ max.3 seconds

Care Note :

Care note for storage

- (1) Current sensor shall be stored in a environment where temperature and humidity must be controlled (temperature 5 to 40°C, humidity 30 to 80% RH). However, the humidity should be maintained as low as possible.
- (2) Current sensor shall not be stored under direct sunlight.
- (3) Current sensor shall be stored in condition without moisture, dust, any material defect solderability, or hazardous gas (i.e. Chlorination hydrogen, sulfurous acid gas, and sulfuration hydrogen)
- (4) The sensor can be stored for at least one year under the condition mentioned above.

Care note for operating and handling

- (1) It is necessary to protect the edge and protection coat of resistors from mechanical stress.
- (2) Handle with care when printing circuit board (PCB) is divided or fixed on support body, because bending of printing circuit board (PCB) mounting will make mechanical stress for resistors.
- (3) Resistors shall be used with in rated range shown in specification. Especially, if voltage more than specified value will be loaded to resistor, there is a case it will make damage for machine because of temperature rise depending on generating of heat, and increase resistance value or breaks.
- (4) In case that resistor is loaded a rated voltage, it is necessary to confirms temperature of a resistor and to reduce a load power according to load reduction curve, because a temperature rise of a resistor depends on influence of heat from mounting density and neighboring element.
- (5) Observe Limiting element voltage and maximum overload voltage specified in each specification
- (6) If there is possibility that a large voltage (pulse voltage, shock voltage) charge to resistor, it is necessary that operating condition shall be set up before use.